
AdhocPairing: Spontaneous audio based secure device
pairing for Android mobile devices

Stephan Sigg, Yusheng Ji
National Institute of

Informatics (NII)
Tokyo, Japan

{sigg,kei}@nii.ac.jp

Ngu Nguyen
University of Science

Ho Chi Minh City, Vietnam
nlnngu@gmail.com

An Huynh
Tokyo University

Tokyo, Japan
zanton.zzz@gmail.com

ABSTRACT
We present an implementation of AdhocPairing, an audio-
based secure pairing application for Android mobile devices.
The application implements recent advances in audio-based
pairing utilising Fuzzy cryptography. In particular, it gen-
erates audio fingerprints from ambient audio of weakly syn-
chronised devices and extracts identical, arbitrary length
secure binary keys. Synchronisation in audio samples is
achieved by approximative pattern matching without inter-
device communication. Additionally, we present results from
a case study with android mobile phones and data on the
entropy of recorded fingerprints.

Keywords
Secure spontaneous device pairing, Android, Pervasive com-
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1. INTRODUCTION
Secure mobile communication among unacquainted devices
naturally faces the problem that an authentication of the
partner device is hard to accomplish. How can we be sure
that the communication is actually conducted with the in-
tended recipient and not with a third party device. Each
attempt to generate a secure key among previously unac-
quainted devices must fail as long as the identity of the re-
mote device can not be verified with high confidence. While
classical cryptographic concepts can not provide a solution
to this basic problem in mobile communication, Pervasive
computing concepts may provide the necessary environmen-
tal device-specific information to authenticate also previ-
ously unacquainted devices. Common solutions require ex-
plicit user input to provide a shared piece of information.
For instance, in Bluetooth, mobile phones generate a random
text, called PIN code, and depend on their users for verifi-
cation. However, these approaches merely shift the problem
from the device to the user. This is not feasible in many ap-
plications due to unavailability of a user. It is also unclear
how then the communication channel between users shall
be secured and their identity authenticated. We present an
application for android-devices which utilises audio-based,
spontaneous secure key generation. In the application, the
seed for the key is conditioned on ambient audio which suf-
ficiently differs depending on spatial location [25]. Remote,
third party devices in another context are then not capable
to generate the same key. For the generation of the key,
the devices need to agree on a time to take a synchronised
audio recording but otherwise do not exchange any informa-
tion which might be utilised to improve the probability to

guess the generated key. Since the seed to the key is im-
plicit with the context, no information that could be used
to reconstruct the key is transmitted during key generation.
A set of devices willing to establish a common key condi-
tioned on ambient audio take synchronised audio samples
from their local microphones. Each device then computes
a binary characteristic sequence for the recorded audio: An
audio-fingerprint. This binary sequence is designed to fall
onto a code-space of an error correcting code. In general,
a fingerprint will not match any of the codewords exactly.
Fingerprints generated from similar ambient audio resemble
but due to noise and inaccuracy in the audio-sampling pro-
cess, it is unlikely that two fingerprints are identical. Devices
therefore exploit the error correction capabilities of the error
correcting code utilised to map fingerprints to codewords.
For fingerprints with a Hamming-distance within the error
correction threshold of the error correcting code the result-
ing codewords are identical and then utilised as secure keys.
This process is explained in detail in [24, 25, 14]. The Ham-
ming distance in fingerprints rises with increasing distance
of devices so that distinct devices are unlikely to guess the
correct key.
In this work we present a program for android devices that
implements the fuzzy cryptography scheme introduced in [24,
25, 14]. Our implementation also exceeds the related work
by the utilisation of a pattern based sequence alignment ap-
proach and by new case studies conducted in indoor envi-
ronments as well as statistical tests conducted for this data
to estimate the entropy of fingerprints.
We will in section 2 discuss related work on secure spon-
taneous pairing of mobile devices, audio fingerprints and
sequence alignment. Section 3 presents our implementa-
tion and discusses discusses the realised pairing of devices
(section 3.1), the synchronised recording of audio signals
(section 3.2), the correction of synchronisation errors in the
recorded sequences (section 3.3) and the creation of finger-
prints (section 3.4). In section 3.5 we present results from a
case study and data on the entropy of recorded audio sam-
ples. Section 4 draws our conclusion.

2. RELATED WORK
The authentication or establishing of a secure key among
wireless devices is currently intensively discussed in the re-
search community. A frequent approach is the utilisation
of an out-of-band channel to transfer confidential informa-
tion. Examples are ultrasound or visible laser light [19, 16].
But also audio is utilised as an out-of-band channel since
it is typically more restricted in range than RF. For in-
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stance, Kim et al. utilise an authenticated audio channel
to share cryptographic information for their Short Random
String (SRS) approach [12]. A similar concept is followed
by Soriente et al. and Claycomb et al. who both rely on the
location-limitation of audio as a source for secure informa-
tion exchange [27, 7]. These approaches, however, mainly
rely on the security of the additional channel. When this
can be compromised, security of the protocol vanishes.
Some authors proposed to incorporate general contextual or
sensor information of mobile devices as a solution for au-
thentication. For instance, McCune et al. [20] introduced
Seeing-Is-Believing. This system utilises the camera of a
mobile device to capture a 2D barcode which is displayed on
the screen of another device. Loud and Clear of Goodrich
et al. [8] implements a similar scheme but exploits spoken
audio. A user reads aloud a text message displayed on one
device and a second device recognises the speech for authen-
tication. As a further example of how sensor input can be
utilised for device authentication, Mayrhofer et al. [17] pre-
sented a mechanism based on accelerometer readings when
devices are shaken simultaneously by a single person. The
authentication is possible with this approach and it is un-
likely for a third person mimicking the movement pattern
remotely to also obtain similar acceleration readings. Also,
Mayrhofer derived in [15] that the sharing of secret keys is
possible with a similar protocol. The proposed protocol re-
peatedly exchanges hashes of key-sub-sequences until a com-
mon secret is found. In contrast, Bichler et al. describe an
approach in which noisy acceleration readings can be utilised
directly to establish a secure communication channel among
devices [2, 3]. They utilise a hash function that maps sim-
ilar acceleration patterns to identical key sequences. These
approaches, similar to others that address the problem of
spontaneous device pairing by utilising contextual data [18,
28], are not unobtrusive since they require explicit user in-
teraction.
By utilising a context source that provides a sufficient amount
of unique, context-related information, such as audio or ra-
dio frequency (RF), it is possible to get the user out of the
loop [11]. Early work in this direction exploited the unique
channel characteristics of a wireless channel among devices.
Wilhelm et al. for instance show that selective channel fad-
ing can be utilised to generate a secure key among remote
wireless devices [30, 31]. Their approach, however, is not
secure against a remote attacker since the generated key is
created among any two remote devices and not necessarily
with the intended communication partner.
By considering the context of a device also, this drawback,
however, can be overcome. Mathur et al. introduced Proxi-
Mate that enables wireless devices in proximity to pair au-
tomatically and securely with each other using a common
key generated from their shared ambient RF-signals [14].
In their experiments, the keys are extracted from radio fre-
quency signals broadcast by Software Defined Radio (SDR)
devices. They generate fingerprints from RF-channel fluctu-
ations and map these onto a codespace of an error-correcting
code. Fingerprints are then seen as codewords with added
bit errors, such as it would be expected after receiving a
codeword transmitted over some error-prone communication
channel. By correcting these potential errors in the finger-
prints, they are mapped onto the closest regular codeword in
the codespace. When the similarity between fingerprints is
high, codewords on both devices are identical. This general

scheme can be applied to arbitrary contextual data that in-
corporate sufficient amount of unique information. Marthur
et. al utilised FM-radio or TV signals at low frequencies.
For mobile devices, the approach can be adapted to higher
frequency ranges. Then, however, due to the reduced wave-
length and coherence distance, antennas of mobile devices
must be close. For instance, in the ISM band, the distance
can not be farther than about 6 cm. We utilise audio in-
stead of RF in a similar implementation [25]. While this
solution allows an increased range of the system, the instru-
mentation requires idealised conditions regarding the syn-
chronisation of devices. Also, the implementation requires
that a high number of fingerprints is created (201 in the ex-
periments) in order to find one matching fingerprint. For
extensive computational load, this is feasible only in an of-
fline approach. The high number of fingerprints created,
however, was necessary since the utilised NTP synchroni-
sation is not sufficiently accurate. This problem was later
solved with an approximative pattern matching in [22].
The fingerprints utilised in these approaches are well known
from audio-processing, where audio fingerprints have typi-
cally been used in identification and matching of audio con-
tents [9, 29, 21, 1]. An audio fingerprint is a compact rep-
resentation of a piece of audio data [5]. It is required to
be robust against noise and easy to compute. Wang [29]
presented Shazam, a popular music search engine. With a
small recorded piece of audio, this service can provide the
name of the corresponding song with high accuracy. In this
algorithm, the audio segment is converted to a spectrogram
and local amplitude peaks are chosen to form a sparse set
of time-frequency points. The peaks are combined with a
number of their neighbours to create the fingerprint hashes.
Haitsma and Kalker [9] claimed that the frequency domain
contains the most important features of audio data. There-
fore, in their proposed fingerprint extraction technique, they
segmented the audio sequence into overlapping frames and
applied a Fourier transform on every frame. Then they se-
lected non-overlapping frequency bands of logarithmic scale
to form a sub-fingerprint for each frame from bits that repre-
sent the energy fluctuation of the audio signal. Ogle and El-
lis [23] adapted this approach in identifying recurrent sound
events in personal recorded data. Waveprint, a novel au-
dio fingerprint extraction method based on computer vision
techniques, was introduced in [1]. The authors generated
spectral images of the audio input. For each of these images,
top wavelets are extracted. Then, they reduced the wavelets
to a binary representation. Finally, the Min-Hash procedure
generated the final sub-fingerprints. The locality-sensitive
hashing technique was used in the matching process. Chan-
drasekhar et al. [6] provides a detailed comparison of pop-
ular audio-fingerprinting extraction schemes applied in an
audio search engine on mobile devices. Our AdhocPairing
application implements the fingerprint creation method from
Haitsma et. al [9] to generate characteristic sequences from
ambient audio for devices in proximity.

3. THE ADHOCPAIRING APPLICATION
We have developed AdhocPairing, an audio-based sponta-
neous device pairing application for android mobile devices.
the application was tested on Samsung Nexus S1 and HTC

1Nexus S Technical Specifications: http://www.google.
com/nexus/tech-specs.html
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Nexus One2 mobile phones. The Android OS of the
Nexus One is CyanogenMode-7.1.0-N1 “cooked”
version 2.3.73. The Nexus S device has the official An-
droid OS version 2.3.6. The application implements a scan
for devices in proximity via Bluetooth, synchronised audio
recording of devices, communication-free alignment of audio
sequences and the creation of audio-fingerprints on the de-
vices as seed for cryptographic keys.
Devices in proximity will generate similar fingerprints while
for remote devices the Hamming distance in fingerprints in-
creases so that the chance to generate a common key by
error correcting codes quickly decreases with distance. A
study on the entropy of ambient audio and on the impact of
audio properties on the key generation was conducted in [24,
25]. Summarising these results, the entropy of ambient au-
dio can be considered as high. also, a dominant audio source
is beneficial for this approach. In particular, in silent envi-
ronments or environments with a high number of equally
loud noise sources (for instance a trafficked road), device
pairing is hardly possible. With increasing noise level, the
similarity in fingerprints decreases. Due to the utilisation
of error correcting codes, however, the sensitivity of the ap-
proach to nose can be adapted by modifying the length of
the sequence considered so that binary fingerprints that de-
viate by an arbitrary small amount from random sequences
can be clearly distinguished from random sequences.
Since the audio fingerprints utilised are conditioned on en-
ergy fluctuation over time [9], time synchronisation among
devices is an important issue here. For a first approximate
time synchronisation, we utilise the NavyClock application4.
This ensures that the clocks on remote devices are approx-
imately synchronised. However, this synchronisation alone
is not sufficient since also the hardware for recording am-
bient audio might have different time offsets as experienced
in our related studies [22]. As described in [24, 25], audio-
recordings of remote devices should not differ by more than
few ten milliseconds in order to achieve sufficiently match-
ing fingerprints. In our case, however, we frequently expe-
rienced a delay of about 0.5 seconds. Therefore, we utilise
a pattern-based communication-free alignment of sequences
(cf. section 3.3 and [22]).

3.1 Pairing of devices
After the start of the application, a device will bound itself
to the NavyClock clock synchronisation and wait for con-
nections via Bluetooth in a client mode. Figure 1a shows a
screenshot of the program with debug messages. In the top
right, the application displays its status, which is to listen
for Bluetooth pairing requests. The screen is further divided
into two sections, showing the currently connected devices
and a status board with debug messages. These messages
show the default parameter of the AdhocPairing program
and a status message that the device was successfully bound
to the NavyClock synchronisation. The default parameters
specify that an audio sequence of 6375 milliseconds will be
recorded with 44100 samples per second. The 6375 millisec-

2Nexus One Technical Specifications: http://www.google.
com/phone/detail/nexus-one
3CyanogenMode: http:/www.cyanogenmod.com
4We use the implementation of Navy-
Clock to synchronise local time of devices:
www.androidpit.de/de/android/market/apps/app/
com.cognition.navyclock/Navy-Clock-II

(a) Client device listen-
ing for connections

(b) Menu of the applica-
tion

Figure 2: Comparison of time offsets and recording of audio

onds for one sequence are chosen such that 18 frames with
15618 samples fit into one sequence. Furthermore, to toler-
ate hardware-originated recording offsets, 2 · 100 additional
milliseconds (in total a sequence of 6575 milliseconds) of
audio are recorded 3 seconds after a pairing request is ini-
tiated. Also, the time-frames and frequency-bands for the
fingerprint creation are detailed (more information on this
process, is provided in [24, 25, 14]). The menu indicates
further actions in this state (cf. figure 1b). In particular,
by choosing ’connect a device’, the device will change into
server mode and send connection requests to other devices.
Devices can be selected manually as displayed in figure 1c.
A successful connection is indicated in the status bar and in
the connected devices frame. Afterwards, the device reports
the debug information that the pairing was successful (cf.
figure 1d).

3.2 Recording of audio signals
To create distributed, synchronised audio sequences for de-
vice pairing, devices use their Bluetooth connection to ini-
tialise a recording. For debugging purposes, the software
enables the sharing of synchronisation information. For in-
stance, figure 2a shows the debug information of the local
time offset of both devices to the NavyClock server (here:
2517 milliseconds and 5640 milliseconds).

The menu option ’Get audio sample’ on the server device
(cf. figure 1b) will cause the server to publish a recording
time to all connected devices, which in turn wait until that
time instant and then start recording synchronised. By de-
fault, the recording time is set to 3 seconds after the ’Get
audio sample’ menu option was selected (cf. status infor-
mation in figure 1a). After recording, the status Board of
the application displays a debug information reporting the
successful caption of audio (cf. figure 2b).

3.3 Alignment of sequences
As mentioned above, the synchronisation by NavyClock alone
is not sufficient to achieve sufficiently synchronised audio
recordings. The reason for this is that the recording hard-
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(a) Client device listen-
ing for connections

(b) Menu of the applica-
tion

(c) Selection of a device
for connection

(d) Server device with
one connected client

Figure 1: Screenshots of the AdhocPairing application with debug information after launching the application

(a) Finding a best
matching between
pattern and sequence

(b) Application of the
Fast Fourier Transforma-
tion

Figure 3: Comparison of time offsets and recording of audio

ware at devices might induce further, unpredictable delays.
We implement the approximate pattern matching detailed
in [22] to account for this property. In particular, the appli-
cation utilises a short (100 samples; approximately 0.003 sec-
onds) predefined audio pattern which is identical for all de-
vices to find in the 200 millisecond time offset of the record-
ing a position that best matches this predefined pattern.

When recorded audio is similar on devices, even though
the predefined audio pattern might be very different to the
recorded audio, chances are good that the ’best matching
position’ is similar for both recorded audio sequences. Af-
ter this pattern matching, the devices then utilise the audio
sequences directly following the best matching position to
create a fingerprint. Notice that the devices do not transmit
any information about the recorded audio since a predefined
pattern is utilised. Furthermore, as the sequence after the
best matching position is utilised to create a fingerprint,

the information obtained from the predefined audio pattern
on the recorded sequence is small. In particular, the ’best’
matching might be very dissimilar to the predefined pattern,
even though it is the best possible matching.
Figure 3a shows the debug information on the screen of the
server-device after the matching was computed. In the fig-
ure, a best matching was found starting at sample 5330,
which translates to 121 milliseconds offset from the start of
the recording. The implemented approximative matching of
the predefined pattern and the recorded sequence is based
on the Smith-Waterman algorithm [26], an approximative
pattern matching technique.
The specific pattern used for matching was extracted ran-
domly from consecutive samples of an arbitrary audio se-
quence. In our experiments, its length is 100 samples. Longer
patterns increased the running time of the algorithm with-
out improving the accuracy of the matching. Due to the fact
that our sampling rate is 44100Hz, a 100-sample pattern is
equivalent to a 0.003-second audio chunk. After finding the
matching position, we can eliminate all samples preceding
this position and generate the audio fingerprint from the
remaining ones. Due to the noise caused by recording hard-
ware and software diversity, the best matching position on
one device may not correspond to the best one on the other.
However, since the alignment matrix contains all matching
scores, no recalculation is required, we can easily find the
top k matching locations of the pattern on each audio file.

3.4 Fingerprint creation
Fingerprints are created following the approach described
in [10] as further detailed in [25]. In particular, for each
of the frames (here 18), the Fast Fourier Transform (FFT)
is calculated and the result is equally split into 33 bands5.
Afterwards, binary fingerprints are created by comparing
the energy fluctuation in successive frames (for further de-
tails on this process, please refer to [25]. Figure 3b depicts
a screenshot of the program during FFT generation. The
status in the upper right reports the status of the FFT com-
putation. The created fingerprints are then stored on the

5these figures can be modified in the configuration
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Figure 4: Time difference of audio sequences after alignment
when a transmitter uses only the best matching position to
generate the key while the receiver decrypts up to ten times
with the corresponding matching positions.

device as a seed to create the cryptographic key. We have
demonstrated in [25] that fingerprints of proximate devices
are more similar than those of remote devices and that the
remaining errors in fingerprints can be corrected without
communication among devices by utilising error correcting
codes to create identical cryptographic keys.

3.5 Secret keys with sequence alignment
In the case study, a Samsung Google Nexus S and a HTC
Google Nexus One, are placed in the same distance d from
an audio source. Ten audio sequences are recorded on each
phone in a distance of 20cm.
In a pairing session of two phones, each of them records a
6.375 + 0.2 second audio file. To improve the alignment re-
sults, the top 10 matching positions of a common pattern
in each audio sequence are found. Then, the audio finger-
prints to create the cryptographic keys are extracted. After
that, each phone has 10 keys, which are obtained without
exchanging any information between the devices. In this
case study, each device has one of two roles, transmitter or
receiver, alternately. The transmitter uses the key created
from the best matching position to encrypt a pre-defined
piece of information and send the encrypted data to the re-
ceiver. At the opposite site, the receiver tries to decrypt the
encrypted data chunk, using its key from the best matching
result. If it fails, it tries again with the key generated from
the second best matching location, and continues for 10 tri-
als until it can recover the data. For sufficiently similar
fingerprints, a time offset in the order of 10 milliseconds is
required for devices in the same audio context (cf. [24, 25]).
With this scheme, we evaluate the efficiency of our pattern-
based alignment method. Figure 4 depicts the median time
difference after alignment when increasing the number of tri-
als in the receiver from 1 to 10. In our experiments, we can
achieve a synchronisation in the accuracy of 2 milliseconds
with 10 trials at the receiver.
We also investigate the entropy of these audio fingerprints
with the DieHarder statistical test suite [4]. For a 512-bit fin-
gerprint, each test in the suite produces a p-value [13] which
denotes the probability of the fact that this binary sequence
is generated from a truly random bit generator. We run all
tests in the DieHarder suite for 20 times. Because the suite
contains 114 single tests, the total number of statistical tests
applied on the set of fingerprints is 2280. The percentage
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Figure 5: Histogram of p-values for all DieHarder tests.

of ”PASSED” results is 92%. Figure 5 shows the histogram
plot of p-values. The results suggest that there is no bias
in the fingerprints generated from recorded ambient audio.
Therefore, an attacker can not gain significant information
from collecting encrypted messages.

4. CONCLUSION
We introduced AdhocPairing, an android application to gen-
erate spontaneous secure keys from ambient audio of de-
vices in proximity. For synchronisation of recorded audio
sequences the application utilises an approximative pattern
matching that does not require inter-device communication
to synchronise audio recordings from remote devices. The
application was instrumented in case studies with different
android mobile devices and the entropy of recorded audio
was studied.
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